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Abstract
We describe surfaces in RN2−1 generated by the holomorphic solutions of the
supersymmetric CP N−1 model. We show that these surfaces are described
by the fundamental projector constructed out of the solutions of this model
and that in the CP 1 case the corresponding surface is a sphere. Although the
coordinates of the sphere are superfields the sphere’s curvature is constant. We
show that for N > 2 the corresponding surfaces can also be constructed from
a similar projector.

PACS numbers: 03.65.Fd, 02.20.−a, 42.50.Ar
Mathematics Subject Classification: 81P15, 94A15

1. Introduction

The subject of Weierstrass representations of surfaces immersed in multidimensional spaces
was introduced few years ago by Konopelchenko et al [1, 2]. This has generated interest [3, 4]
in looking at the properties of these surfaces and relating them to the solutions of the CP N−1

model. Recently one of us (WJZ), together with Grundland [5] presented a general procedure
for the construction of such surfaces from the harmonic CP N−1 maps. This approach involved
writing the equation for the harmonic map as a conservation law and then observing that in this
construction a special operator played a key role. This operator, related to the fundamental
projector of the harmonic map, was then used in the construction of the surface.

The CP N−1 model has been supersymmetrized [6] thus giving us supersymmetric
harmonic maps. The question then arises: (1) what surfaces do these supersymmetric maps
correspond to, and (2) what properties do they have? This is the problem that is studied in this
paper.

In the next section we briefly review the supersymmetric CP N−1 harmonic maps (using
the formalism as given in [7]). We then construct the operators which are the supersymmetric
generalization of the operators of the purely bosonic maps. We also construct the Weierstrass
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surfaces and show that, as in the purely bosonic model, the surfaces are described by the
projector of the harmonic map. This allows us to show that in the CP 1 case, as in the
corresponding bosonic case, the resultant surface is a sphere. In the final sections of the paper
we discuss its properties and present a short discussion of the corresponding surfaces for
N > 2.

2. Formalism

2.1. The supersymmetric CP N−1 model

We are interested here in the supersymmetric (SUSY) CP N−1 model which is constructed
on the two-dimensional superspace (x, y, θ1, θ2) where the anticommuting quantities θ1 and
θ2 denote two components of a majorana spinor θ and can be thought of as being real.
For our considerations, a better choice of coordinates will be the complexified superspace
(x+, x−, θ+, θ−) where

x± = x ± iy, θ± = θ1 ± iθ2.

We consider in particular a complex bosonic superfield which is a N-column vector defined as

�(x+, x−, θ+, θ−) = z(x+, x−) + iθ+χ+(x+, x−) + iθ−χ−(x+, x−) − 1
2θ+θ−F(x+, x−), (2.1)

where z, F are N-component bosonic fields and χ+, χ− are N-component fermionic fields.
Since the fermionic fields χ+, χ− anticommute with each other and with θ+, θ−, the Hermitian
conjugate of the superfield � is given by

�†(x+, x−, θ+, θ−) = z†(x+, x−) + iθ−χ †
+(x+, x−) + iθ+χ

†
−(x+, x−) − 1

2θ+θ−F †(x+, x−).

In the SUSY CP N−1 model, � satisfies �†� = 1. In terms of z, χ+, χ− and F, this condition
reads

z†z = 1, χ
†
±z + z†χ± = 0, F †z + z†F = 2

(
χ

†
−χ− − χ †

+χ+
)
. (2.2)

The usual derivatives ∂± = 1
2 (∂x ± i∂y) are generalized to superderivatives so that we get

∂̌± = −i∂θ± + θ±∂±. (2.3)

They are fermionic and satisfy anticommuting properties that we have to take into account in
the calculations. For example, the following relations will be useful later:

(1) If � is a bosonic superfield, we have

(∂̌±�)† = ∂̌∓�†, (∂̌+∂̌−�)† = ∂̌+∂̌−�†. (2.4)

(2) If � is a fermionic superfield, we have

(∂̌±�)† = −∂̌∓�†, (∂̌+∂̌−�)† = ∂̌+∂̌−�†. (2.5)

(3) In general, we have

∂̌±∂̌± = −i∂±. (2.6)

Let us recall that we are considering SUSY models. This means that the corresponding
Lagrangian density and equations of motion must be expressed in terms of the superfields
�,�† and the associated supercovariant derivatives. A definition of these supercovariant
derivatives has thus to be given. Let us note that they will be dependant on the superfields �

and �† and will be defined as acting on bosonic as well as fermionic superfields. We get

Ď±� = ∂̌±� − �A±, A± = �†∂̌±�,



Susy CP N−1 model and surfaces in R
N2−1 14233

where � is an arbitrary homogeneous (bosonic or fermionic) superfield. In our SUSY CP N−1

model, the quantities A± are scalar fermionic superfields. In particular, we have

Ď±� = (I − P)∂̌±�,

where I is the identity operator and P = ��† is a projection operator. We also have

(Ď±�)† = ∂̌∓�†(I − P).

We can now write both the Lagrangian density and the equations of motion of our model as

L = 2(|Ď+�|2 − |Ď−�|2) (2.7)

and

Ď+Ď−� + |Ď−�|2� = 0. (2.8)

Similarly to the case of the non-SUSY CP N−1 model, we can introduce the following spectral
equations (λ ∈ R):

∂̌+� = 2

1 + λ
K

†�, ∂̌−� = 2

1 − λ
K�,

where

K = [∂̌−P, P], K
† = [∂̌+P, P]. (2.9)

So the equation of motion (2.8) is a compatibility condition for these spectral equations that
could be written as a superconservation law:

∂̌+K + ∂̌−K
† = 0.

Let us now show that K = M + L is in fact a linear combination of two distinct conserved
quantities. Indeed, since we have �†� = 1, we can set

� = |w|−1w (2.10)

and

P = ��† = |w|−2ww†.

Let us recall that we thus get

tr P = 1, and det P = 0. (2.11)

Now K in (2.9) takes the form

K = [∂̌−P, P] = |w|−2(∂̌−ww† − w∂̌−w†) + |w|−4(∂̌−w†w − w†∂̌−w)ww†. (2.12)

Setting

M = (I − P)
∂̌−ww†

|w|2 , L = −w∂̌−w†

|w|2 (I − P), (2.13)

we easily get K = M + L. Since we also have

M − L = ∂̌−P,

L and M are conserved.
Incidentally the equations (2.8) when written in terms of w take the form:

∂̌+∂̌−w − ∂̌+w
(w†∂̌−w)

|w|2 − (w†∂̌+w)

|w|2 ∂̌−w − (w†∂̌+∂̌−w)

|w|2 w + 2w
(w†∂̌+w)(w†∂̌−w)

|w|4 = 0.

(2.14)
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2.2. Special solutions of the equations of motion

Let us now take � as in (2.10) where we assume that w = w(x+, θ+). Since, we have in this
case

∂̌−� = (∂̌−|w|−1)w + |w|−1∂̌−w = (∂̌−|w|−1)w

and

P∂̌−� = ∂̌−�,

we get

Ď−� = 0. (2.15)

Thus we see that

w = w(x+, θ+)

solves the equation of motion (2.14). In analogy with the purely bosonic case we shall call
such a solution ‘holomorphic’.

In this case we also have M = 0 and

K = L = −∂̌−P = |w|−2(−w∂−w†) + |w|−4(∂−w†w)ww†. (2.16)

Let us now define the bosonic quantity L = −i∂̌−L and the Hermitian conjugate which,
from (2.5), is given by L† = i(∂̌−L)† = −i∂̌+L

†. From (2.16), we get

L = ∂−P, L† = ∂+P,

so that L is conserved in the usual sense, i.e.

∂+L + ∂−L† = 0.

Similarly as in the non-SUSY case, we can construct

X =
∫

γ

L dx− +
∫

γ

L† dx+, (2.17)

which is independent on the contour of integration and we see that

X = P. (2.18)

As our projector P, seen as a N × N matrix, is Hermitian and satisfies (2.11), it can be
characterized by (N2 − 1) real entries subject to a nonlinear constraint (det P = 0). In fact,
these entries could serve to construct a real vector which will describe the surface we want to
characterize.

3. The CP 1 case

3.1. Explicit form of X = P

Now we look at the case of CP 1 . In this case our bosonic superfields � and w have only two
components. Thus the projector P is a 2 × 2 matrix which can be written as

P =
(

P11 P12

P21 P22

)
= 1

2
(I + Xiσi), (3.1)

where

X1 = P12 + P21, X2 = i(P12 − P21), X3 = P11 − P22.
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Then using (2.11) we easily get

X2
1 + X2

2 + X2
3 = 1. (3.2)

This suggests that we take the three-component vector describing our surface as X =
{X1, X2, X3} which is the surface of a sphere of radius 1.

To get the explicit form of Xi we can proceed as follows.
First, using the overall gauge freedom, we can choose

w =
(

1
W

)
(3.3)

and so we see that effectively we are dealing with a bosonic superfunction W . Of course now
P is given by

P = 1

1 + |W |2
(

1 W †

W |W |2
)

and the components of the vector X are given by

X1 = W + W †

1 + |W |2 , X2 = i(W † − W)

1 + |W |2 , X3 = 1 − |W |2
1 + |W |2 . (3.4)

However, these fields are just the fields of the alternative (S2) description of the CP 1

model. The relation between them is given by

Xi = �†σi�.

Thus the situation is the same as in the purely bosonic case. In that case we also knew that for
holomorphic solutions of the CP 1 model the generated surface corresponded to a sphere.

Our result showing that this surface is described by the projector P, and then the surface
vector X which is constructed from this projector, in fact, corresponds to the alternative
formulation of the model, is not altered by the supersymmetrization of the model.

For the solutions of the equations of motion (2.8) we have

W = f + iθ+g, (3.5)

where f and g are, respectively, bosonic and fermionic functions of x+.
Putting all the expressions in (3.4) we see that the explicit form of the vector X is given

by

X1 = (f + f̄ )

1 + |f |2 + iθ−
ḡ(1 − f 2)

(1 + |f |2)2
+ iθ+

g(1 − f̄ 2)

(1 + |f |2)2
+ 2θ+θ−

ḡg(f + f̄ )

(1 + |f |2)3
,

X2 = i
(f̄ − f )

1 + |f |2 − θ−
ḡ(1 + f 2)

(1 + |f |2)2
− θ+

g(f̄ 2 + 1)

(1 + |f |2)2
+ 2iθ+θ−

ḡg(f̄ − f )

(1 + |f |2)3
,

X3 = (1 − |f |2)
1 + |f |2 − 2iθ−

ḡf

(1 + |f |2)2
− 2iθ+

gf̄

(1 + |f |2)2
+ 2θ+θ−

ḡg(1 − |f |2)
(1 + |f |2)3

.

We note that although the components of X satisfy (3.2) they are, in fact, superfields—i.e.,
they have fermionic parts.

3.2. Metric

Next we look at the metric induced on the surface. We introduce the metric by putting

gij = ∂iXk∂jXk,

where the sum goes over all the components of X.
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However, it is more convenient to change variable to the holomorphic basis and so
introduce g±±, where the indices +(−) denote the x+ (x−) components of the metric. Then,
as we shall see below, only the g+− = g−+ components are nonzero.

Note that as our vector X is constructed from the components of P we have

g±± = tr ∂±P∂±P. (3.6)

Then as

∂+P = −(I − P)
∂+ww†

|w|2
we see that

∂+P∂+P = 0,

and so we see that g++ = 0. Of course g−− also vanishes as it is given by g−− = ḡ++.

However g+− is nonzero. To calculate it we note that it is given by

∂+W∂−W̄

[1 + |W |2]2
. (3.7)

Note that this expression, superficially, is similar to the energy density. It would have been
exactly that if the derivatives had been of type ∂̌ instead of type ∂ . As W is a superfield g+−
is a superfield too. So what are its components?

Clearly, the bosonic part, which comes from putting θ± = 0 in (3.7) is given by

∂+f ∂−f̄

[1 + |f |2]2
.

It is the bosonic energy density, i.e. the term that we get in a nonsupersymmetric version of
the problem. Calculating the other parts of g+− we obtain the complete result as

g+− = ∂+f ∂−f̄

[1 + |f |2]2
+ iθ+∂+

(
g∂−f̄

[1 + |f |2]2

)
+ iθ−∂−

(
ḡ∂+f

[1 + |f |2]2

)
− θ+θ−∂−∂+

(
gḡ

[1 + |f |2]2

)
.

(3.8)

Hence we see that the metric does have fermionic corrections but, as they are total derivatives,
they average to zero (i.e., vanish after integration over x+ and x−).

3.3. Curvature

Now, we calculate the curvature of our metric (3.8). As it has only the g+− component, the
curvature is given by

K = −2
1

F
∂+∂− ln F, (3.9)

where F = 1
2g+−.

To perform the calculation we note that

ln

(
∂+W∂−W̄

[1 + |W |2]2

)
= ln(∂+W)) + ln(∂−W̄ ) − 2 ln([1 + |W |2]). (3.10)

However as W = W(x+, θ+) only the first two terms in (3.10) vanish when one applies to them
∂+∂− and so we get

K = − [1 + |W |2]2

∂+W∂−W̄
(−2)∂+∂−(ln[1 + |W |2]) = 2. (3.11)

Thus the curvature is purely bosonic and, as expected, is 2.
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This is not unexpected as our surface is a surface of a sphere. However, it is interesting
that although the coordinates of this surface are superfields and the induced metric is also
described by a superfield all the fermionic effects cancel and the curvature is just K = 2.
Hence the fermionic modification does not alter the curvature of the surface.

4. Weierstrass system for CP 1

Let us recall the regular Weierstrass problem for the nonsupersymmetric CP 1 system. In this
case one considers two complex functions ψ , φ of x+ and x− which satisfy the equations

∂+ψ = (|ψ |2 + |φ|2)φ, ∂−φ = −(|ψ |2 + |φ|2)ψ. (4.1)

Then to find a solution of these two equations one can put

V = ψ

φ̄

and eliminate ψ . Then one rewrites (4.1) as

∂+V = φ2(1 + |V |2)2, ∂−φ2 = −2|φ|4V (1 + |V |2).
Thus

φ2 = ∂+V

(1 + |V |2)2
(4.2)

and we see that V satisfies

∂−∂+V = 2
V̄ ∂+V ∂−V

1 + |V |2 ,

i.e. the equation of the CP 1 model.
What is the supersymmetric version of this problem? As we know, in the supersymmetric

case, V becomes W as in (3.3). Its equation of motion can be deduced easily from (3.3) and
(2.14) and it is

∂̌+∂̌−W = 2W̄
∂̌+W∂̌−W

1 + |W |2 . (4.3)

Having W for V , we take Z2 as the supersymmetric analogue of φ2 defined in (4.2). We
require that W and Z2 satisfy

∂̌+W = (1 + |W |2)2Z2, ∂̌+Z
2 = −2WZ2Z̄2(1 + |W |2).

Note that W is bosonic while Z2 is fermionic. We have

Z2 = ∂̌+W

(1 + |W |2)2
(4.4)

and, as is easy to check, W solves equation (4.3).
Can one take the nonsupersymmetric limit of this problem? This is difficult as Z2 is

fermionic. However, we can put

φ2 = ∂̌+Z
2.

Then, as

∂̌+W̄ = 0

we see that

∂̌+Z
2 = ∂̌+∂̌+W

[1 + |W |2]2
. (4.5)

Note that due to (2.6) we see that (up to an overall factor −i) this is the correct expression
for φ2 after we have set all θ± = 0.
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5. Generalization to CP N−1

Some of our results generalize easily to the CP N−1 case. This is the case in particular with
the projector P which gives us a surface in RN2−1 for the CP N−1 model.

So our surface is defined in terms of P. How should we then define our vector X? A little
thought shows that, as in the nonsupersymmetric case, we should take X in such a form that an
analogue of (3.1) holds, i.e. ∂−Xi∂+Xi is proportional to tr ∂−P∂+P as then g++ = g−− = 0.

This requires that we take off-diagonal entries of the matrix P, say Pij and form from
them the N(N − 1) components of X. To do this we take Pij + Pji and i(Pij − Pji). For the
diagonal entries we have some choice. We want the remaining (N − 1) vector components of
X, called Xi to be such that

N−1∑
i=1

∂+Xi∂−Xi = 2
N∑

i=0

∂+Pii∂−Pii .

In the CP 1 case this tells us that we should take the component P11 − P22. For larger N we
have more choices; thus for CP 2 we can take (this choice is based on Gell Mann’s SU(3) λ

matrices)

X1 = P11 − P22, X2 =
√

3(P11 + P22),

or we could make another choice. In general, for CP 2 we could take

P11 = 1
3 + aX1 + bX2, P22 = 1

3 + cX1 + dX2.

Then we choose a, b, c and d so that

∂+X1∂−X1 + ∂+X2∂−X2

give the same expression as

∂+P11∂−P11 + ∂+P22∂−P22 + ∂+P33∂−P33

in which we can eliminate P33 using P33 = 1 − P11 − P22.

This guarantees that only g+− is nonzero. A simple calculation shows that we have a
one-parameter family of solutions

a = 2√
3

cos α, b = 2√
3

sin α,

c = ∓sin α − 1√
3

cos α, d = − 1√
3

sin α ± cos α.

For N > 2 the solutions are even more nonunique.
Note also that with all these choices we always have

g+− = tr(∂+P∂−P). (5.1)

Moreover, the other components of the metric vanish. Thus the metric has a nontrivial
dependence on the fermionic degrees of freedom. A simple calculation shows that we can
rewrite (5.1) as

g+− = (∂+�
†(I − P)∂−�) + (∂−�†(I − P)∂+�).

This is closely related to the energy density of the original map—in the nonsupersymmetric
case it is proportional to this density; this is not the case here as (5.1) involves ∂ derivatives
and not ∂̌!

It is easy to see that the fermionic contributions to both the metric and the curvature do
not cancel. We have looked at these corrections in the CP 2 case. Then the vector w has three
components which can be taken in the form

w =

 1

W1

W2


 . (5.2)
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The detailed calculations then show that g+− is again given by the same expression as the energy
density of the nonsupersymmetric model with, however, superfields in place of bosonic fields.
Thus we have

g+− = |∂+W1|2 + |∂+W2|2 + |W2∂+W1 − W1∂+W2|2
[1 + |W1|2 + |W2|2]2

. (5.3)

We can now expand this expression in powers of θ . However, it is easy to check that,
say, the θ+ corrections involve expressions that are not total derivatives. The same is true for
the calculation of the curvature. In the CP 1 case we had the nice factorization of the terms in
g+− leading to the fact that the derivative terms did not contribute to ∂+∂− ln(g+−). This was
essential for the cancellation of various factors leading to K = 2. This time the numerator in
(5.3) contains three terms and it does contribute to ∂+∂− ln(g+−). In consequence K is not very
simple and the fermionic contributions to it do not cancel. We have checked this explicitly but
as the obtained expression is quite complicated we do not present it here. Hence, the simple
results of the CP 1 case do not hold any more; both the metric and its curvature are given by
full superfields.

6. Conclusions

In this paper we have discussed the supersymmetrization of the Weierstrass problem and
extended to the supersymmetric case the work of Grundland et al [5]. Our results have
shown that with small modifications the extension has not led to results which are significantly
different from the purely bosonic case. In the CP 1 case we have again obtained a sphere.
Its coordinates are given by real bosonic superfields which have both bosonic and fermionic
parts. However, these fermionic corrections do not play a role in the description of some of
the sphere’s properties; e.g., in the calculation of the curvature all the fermionic contributions
cancel and, as in the purely bosonic case, we get K = 2. They do play a role in the metric—but
as they are given by total derivatives, they cancel when we integrate over x+ and x−.

When taking larger N we have found that, for the holomorphic CP N−1 fields, the projector
P still describes the surfaces in RN2−1. This time, however, the curvature is not constant and,
furthermore, it contains fermionic corrections.

The more general solutions of the supersymmetric CP N−1 model, for N > 2, are given
by fields which are neither holomorphic nor antiholomorphic. Their description is somewhat
complicated due to the constraints of the model. The corresponding surfaces are expected to
be more complicated. They have not been studied yet due to these constraint problems which
still have to be resolved. This work is currently under consideration.

Acknowledgments

The work reported in this paper was started when VH visited the University of Durham in
Michaelmas term 2005. She would like to thank the University of Durham for the award of
a Grey College Fellowship and the Department of Mathematical Sciences for its hospitality.
The research of VH is partially supported by research grants from NSERC of Canada. This
paper was finished when WJZ visited the University of Montreal in March 2006. He wishes
to thank the University of Montreal for hospitality and the LMS for its travel grant.

References

[1] Konopelchenko B and Taimanov I 1996 Constant mean curvature surfaces via an integrable dynamical system
J. Phys. A: Math. Gen. 29 1261–5

http://dx.doi.org/10.1088/0305-4470/29/6/012


14240 V Hussin and W J Zakrzewski

[2] Carroll R and Konopelchenko B 1996 Generalized Weierstrass-Enneper inducing conformal immersions and
gravity Int. J. Mod. Phys. A 11 1183–216

[3] Konopelchenko B and Landolfi G 1999 Generalised Weierstrass representation for surfaces in multi-dimensional
Riemanian spaces Stud. Appl. Maths. 104 129–69, and references therein

[4] Bracken P and Grundland A M 2001 Symmetry properties and explicit solutions of the generalised Weierstrass
system J. Math. Phys. 42 1250–82 and references therein

[5] Grundland A M and Zakrzewski W J 2003 CP N−1 harmonic maps and the Weierstrass problem J. Math.
Phys. 44 3370–82

[6] D’Adda A, Luscher M and Vecchia P Di 1979 Confinement and chiral symmetry breaking in CP N−1 models
with quarks Nucl. Phys. B 152 125–44

[7] See, e.g., Zakrzewski W J 1989 Low Dimensional Sigma Models (Bristol: Hilger)

http://dx.doi.org/10.1142/S0217751X96000547
http://dx.doi.org/10.1111/1467-9590.00133
http://dx.doi.org/10.1063/1.1337796
http://dx.doi.org/10.1063/1.1586791
http://dx.doi.org/10.1016/0550-3213(79)90083-X

	1. Introduction
	2. Formalism
	2.1. The
	2.2. Special solutions of the equations of motion

	3. The
	3.1. Explicit
	3.2. Metric
	3.3. Curvature

	4. Weierstrass
	5. Generalization
	6. Conclusions
	Acknowledgments
	References

